Refactoring the Embden–Meyerhof–Parnas Pathway as a Whole of Portable GlucoBricks for Implantation of Glycolytic Modules in Gram-Negative Bacteria
نویسندگان
چکیده
The Embden-Meyerhof-Parnas (EMP) pathway is generally considered to be the biochemical standard for glucose catabolism. Alas, its native genomic organization and the control of gene expression in Escherichia coli are both very intricate, which limits the portability of the EMP pathway to other biotechnologically important bacterial hosts that lack the route. In this work, the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (GlucoBrick) that enables their grouping in the form of functional modules at the user's will. After verifying their activity in several glycolytic mutants of E. coli, the versatility of these GlucoBricks was demonstrated in quantitative physiology tests and biochemical assays carried out in Pseudomonas putida KT2440 and P. aeruginosa PAO1 as the heterologous hosts. Specific configurations of GlucoBricks were also adopted to streamline the downward circulation of carbon from hexoses to pyruvate in E. coli recombinants, thereby resulting in a 3-fold increase of poly(3-hydroxybutyrate) synthesis from glucose. Refactoring whole metabolic blocks in the fashion described in this work thus eases the engineering of biochemical processes where the optimization of carbon traffic is facilitated by the operation of the EMP pathway-which yields more ATP than other glycolytic routes such as the Entner-Doudoroff pathway.
منابع مشابه
Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis.
Radiorespirometry was used to compare the primary pathways of glucose catabolism in 18 strains of Bacillus thuringiensis representing the 12 established serotypes. Every strain utilizes the Embden-Meyerhof-Parnas pathway almost exclusively; pentose-phosphate pathway participation is minor. The Embden-Meyerhof-Parnas pathway predominates regardless of whether the cells were grown in a minimal me...
متن کاملEmbden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation?
Genome data as well as biochemical studies have indicated that--as a peculiarity within hyperthermophilic Archaea--Thermoproteus tenax uses three different pathways for glucose metabolism, a variant of the reversible EMP (Embden-Meyerhof-Parnas) pathway and two different modifications of the ED (Entner-Doudoroff) pathway, a non-phosphorylative and a semi-phosphorylative version. An overview of ...
متن کاملEmbden-Meyerhof glycolytic pathway and Gluconeogenesis
Glycolysis (Embden-Meyerhof-Parnas pathway) is the most common sequence of reactions for the conversion of glucose-6-P into pyruvate in all domains of life. It generates ATP, reduced equivalents, and precursor metabolites for a multitude of essential cellular processes. During growth on substrates other then hexoses, essential glycolytic intermediates are synthesized via glyconeogenesis, revers...
متن کاملWhat's for dinner?: Entner-Doudoroff metabolism in Escherichia coli.
The Entner-Doudoroff (ED) pathway was first discovered in 1952 in Pseudomonas saccharophila (21) and several years later was shown to be present in Escherichia coli (23). Although generally considered to be restricted to gram-negative bacteria, the ED pathway is present in all three phylogenetic domains, including the most deeply rooted Archaea (18). The ubiquity of the ED pathway suggests that...
متن کاملInduction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival.
Statistical models were used to predict the effects of tryptone, glucose, yeast extract (TGY) and Mn on biomass formation of the highly radioresistant bacterium Deinococcus radiodurans. Results suggested that glucose had marginal effect on biomass buildup, but Mn was a significant factor for biomass formation. Mn also facilitated glucose interactions with other nutrient components. These predic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017